1108 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 48, NO. 7, JULY 2000

FIR Parity Check Codes

Chris HeegardFellow, IEEE,and Andrew J. King

Abstract—This paper describes a method for packet synchro- generated by a (binary) primitive polynomial. This structure
nization and error detection for use in a synchronous digital allows for a computationally efficient implementation of the
communications system. The method relies upon a class of linear parity check FIR filter, in a recursive manner, that is none the

block codes that have parity checks that are expressed in terms .. .
of a finite-impulse response(FIR) filter. This system is incor- less self-synchronizing. The FIR parity check codes are charac-

porated in the newly established ITU standard of digital cable te€rized as the dual of a CRC-type, shortened cyclic code.

television standard, J.83 appendix B, which is based on an MPEG  The paper begins in Section Il with background material that
2 transport packet data stream. This technique is also the basis reviews basic definitions and ideas from algebraic coding theory
for cable modem downstream transmission defined in the IEEE and the theory of polynomials and filters. The second section,

802.14 and MCNS standards. The parity check structure is based Section IIl. d ibes the th d tati | struct f
on a pseudonoise sequence generated by a (binary) primitive ection lil, describes the theory and computational structure o

polynomial. This structure allows for a computationally efficient FIR parity check codes. In Section 1V, a few small examples, as
implementation of the parity check FIR filter, in a recursive well as the J.83B code are used to illustrate the general theory.
manner, that is none the less self-synchronizing. The FIR parity The reader may find it helpful to peruse the examples in Section

check codes that are described are characterized as the dual of apy, ; ; ; ; ; ; ;
CRC-type, shortened cyclic code. The theory and computational ;S\/e::r:i(;:r(])?ljlunctlon with understanding the details presented in

structure of these codes are presented here; the J.83B code is use
as an example of the general theory.

Index Terms—Block codes, cyclic codes, dual codes, linear codes, ll. BACKGROUND

pseudonoise coding, FIR digital filters. A. LBC'’s

Abinary LBCC ¢ FJ with parameter$n, k) consists of &
|. INTRODUCTION dimensional subspace of the set of binarjuples 7% [2]-[4].

HIS paper considers a class of linear block codes (LBC’ uch a space can be desc_:nbed by a stimsis vectorplaced
In ak x n generator matrix

that have parity checks that are expressed in termdiof a

nite-impulse respong€IR) filter. The codes are useful for block 1 g1z Gin
synchronization and error detection in a synchronous digital @1 22 o Gom
communications system. The objective of the block encoding G= .

is to periodically insert parity check information into the packet

stream. Initially, the parity checks are used to establish packet k1 Gk2 7 Gk

sired packets. After packet synchronization is established, {)g matrix multiplicationc = mG, wherem € F% is a binary
parity checks are used to detect uncorrected errors that mayple. If the firstk columns of@ is the identity matrix, we say
have occurred at the output of the receiver/error correction Pkt 7 represents aystematic encodeNote that a given LBC

B, which is based on an MPEG 2 transport packet data stregf}. — ,, —  linearly independenparity-check equationthat
[1]. This techmqu_e is als_o the_z basis for cable modem dowRap pe expressed in terms aparity-check matrix, anr x n
stream transmission defined in the IEEE 802.14 and MCNghary matrix. A binary vector of length is acodewordf and

standards. only if

The novel aspect of the encoding is that the parity checks
of the blockcode are computed at the receiver by observing hix hoy - ket
the output of a FIR linear time-invariant, (binary) filter. The hiz hep oo 2

parity check structure is based on a pseudonoise (PN) seque(r?éecl’ 1) : o =(0,0,---,0)

hin hen - Bpn
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Fig. 1. The relationship betweef{z) = 1/g(x), a(x)/g(x) andb(x)/g(x).
A cosetof a LBC is obtained via solutions to the equation  Similarly, a rational function (i.e., ratio of polynomials)

t_ i .
oH' =S 4 i)=Y e
glz —
whereS is a fixed binary vector of length. J=0
To encode onto a coset of a LBC, a constant vector can isalefined by the polynomial equation

added
g(x)e(x) = a(z)
c=mG+o The power series(x) implies the difference equation
whereocH! = S. For a systematic encoder, the constant vector degree(a) P 00
o can always be chosento be zeroin the firsbordinates (thus y; = Z AWy — Z QY1 = Z Qwi_q.
a constant is added to the parity checks only). =0 =1 =0

If f(x) = 1/g(x) andm > 0 is any nonnegative integer then

B. Polynomials, Rational Functions, and Filters i
the delayedpower seriege; = fj41m)

Given a binary polynomial
= . alx)
g(z) =1+ g1z + gz’ + -+ gr1z’ 2" o) = Zo T’ = g9(x)
of degreer, the power series for somea(z) of degree less than (a(x) is easily determined
oo from the polynomial equatiop(x)e(x) = a(z)).
flz) = Z fia Furthermore, for the nonnegative integer 0 thetruncated
j=0 power series (a polynomialy,; = 0, for j > n)

L
g(x)

is defined by the relationship (z) — *+1b(x)

k
W) = frpmed =2
j=0

o)) = 1. o)
Note that the power serig&x) forms a periodic sequence, thatfor someb(z) of degree less than In fact
’ oo P @) % = Z Fimpiopr’
f@)=fP) Y o= - o _ .
i=0 b(x) is easily determined from the polynomial equation
where P is the (fundamental) period of(x) and f7(z) = ﬁfiﬁ)g;;(x) = o(®) — #**b(x). The difference equation, in

Efz_ol f;2 represent the truncated power series vitterms.

It is well known that the period® < 2" — 1, where equality is

achieved if and only ify(z) is a primitive polynomial; in this ¥ = Z AmWj—m — Z btwj_(k+1)_tZglyj4
t=0

degree(a) degree(b) r

case,f(x) is said to be anaximal length, pseudorandof®@N) m=0 =1
sequence. b

Closely associated with the power serjfs;) is thediffer- - Z howj—, @
enceequation =0

] which corresponds to gliding windowor FIR system.

. - . - The relationship of three power series is indicated in Fig. 1.
yp=wy = > =) frwj We are interested in the polynomiat*!(z), of degreek,
that is obtained from the subsequence of the power s¢fies
which describes dinear, time-invariant, causal, finite-state starting with the terny,,, up to the terny,,,+ . Sincea(x)/g(x)
system with input sequence;, output sequencey;, and begins withf,,, andb(z)/g(x) begins withf,,;x+1, the piece
impulse responsg;. we are interested in can be obtained by shiftig)/g(z) by

=1 =0
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Fig. 2. The relationship betweetz)/g(x), 2*T1b(x)/g(x) andh*+1(x). Yia ) Yi : IsI - lyil+|1I e IsI -

k + 1 places (i.e., by multiplying byt;4+1) and subtracting. Fig. 3. Syndrome calculation.
This relationship is depicted in Fig. 2. Note that sin¢e) has

a degree less than(< k), the firstr terms of the sequence,nomjal of degree less thanthat determines which coset of the
Joms fmg1s e+ fmgr—1, fOrm a(z), while ther terms starting | B is used) periodically embedded at the end of each n-block
at z*** form b(x) (there is no overlap in the difference(in the absence of channel errors). Thus by correlating the syn-
a(z) — z***b(z)). Note that this filter can be implemented grome sequenc() with the constant polynomia(z), syn-
using the difference equation (1), with a number of terms thafronization can be established and maintained. It is important
has|la(x)|| + [[b(x)[| + llg(x)|| terms rather thaf2***(z)||  in the acquisition phase that the correlation with the kneu)
terms (where| - || is theHamming weighbf the polynomial). pe reliable in the presence of noise (channel errors). For this
This is very important in our application, since the polynomialgason, care should be taken in the design of “sync” polynomial
aga:), b(x), g(x) are small degree (8 or less) and the degree gf,) to address this issue. In particular, the polynomial should
h¥ti(z) is large. have good autocorrelation properties (e.g., a Barker code). In
fact, the zero polynomiaé(xz) = 0 (which corresponds to a
Hl. FIR PARITY-CHECK LBC'S linear code) has a poor autocorrelation and thus would be a poor

We are interested in generating LBC's for which the paritghoice.
check equations can be implemented by a single FIR filter. LetBY using a systematic encoder, the data is recovered directly
K*+1(z) be a polynomial of degre# with nonzero constant from the concatenated sequencér). Furthermore, once syn-
term(ho = hi = 1). Then, the equation shown at the botton§hronization has been established, the syndrome can be used
of the page defines an {FIR-parity-check-code} FIR-PCC. Wit detect errors in the data whenever the fixed polynosiia)
such an FIR-parity-check LBC, codewordsz) that are con- fails to appear at the anticipated time. Finally, by using an FIR

catenated together parity check means that the syndrome former is self-synchro-
- nizing (i.e., the initial conditions of the syndrome are resolved
w(z) = Z oi(2)a™ automatically) and has limited error propagation (the effect of

an error is limited to the length of the FIR windok:+ 1 bits).
_ _ _ _ To choose the respongé*(z), a recursive solution is re-
can be synchronized by passingr) through the FIR filter with  quired. Once a recursion polynomiglr) is selected, a suitable

responsei*+!(z) a(z) andb(z) are determined so that
S(x) = W (@)w(e) = Y (walw) + abs@)a’™ W () = %;b(x)
=0 4

where eacly; (z) has a degree less thar{see Fig. 3). Theyn- with nonzero constant term and degke@ro = hi, = 1). (Note
drome sequencg(z) has the constant polynomiglz) (a poly- that onceg(z) is specified, only certain choices efx) and
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Fig. 4. Syndrome calculator/sync detect. Fig. 5. Two ways to cascade the IIR and FIR filters.
b(z) will work; namely those for whichy(z) dividesa(z) — dividesa(a) — z**1b(x).) This means, that within one block-
2FH1p(z).) length, the output of the decoder parity check circuit will be-

Fig. 4 shows the general form for the calculation of the sy§ome all Os (even though the state of the parity check circuit
drome and synchronization detection. It is important to not& nonzero forever). This argument can be extended to nonzero
that the effects of the initial conditions in the recursive pogdata, nonzero offset and to account for the finite error propaga-
tion of the circuit (i.e., the feedback part that implements tHEonN in a straightforward manner.

1/g(z) function) have finite effect on the output. This is a di- It is important to note that from an impulse response (or
rect consequence of the fact that the polynonfifal) = a(z)—  Input/output) analysis, the two cascaded filters in Fig. 5 are
2*+1p(z) is divisible byg(z) and that the operations that implethe same. The two ways implement the same rational transfer
ment these functions operate on the output of the recursive pHction, but from a transient (or initial condition) analysis, the
of the circuit. For example, if the initial conditions are nonzerBVo act quite differently. The first form is self-synchronizing,
in the 1/¢(x) circuit, and the input is constantly zero, then théhe latter is not.

output of the recursive portion is the PN sequence generated byinally, a systematic encoder must be implemented. A
1/g(z). However, withinn, steps, the syndrome calculator willsimple two pass encoder is constructed as follows. First, take
constantly produce zero at the output. This property also insuf8g* bit message, followed by zeros, and pass the resulting
that the effects of channel errors on the output of the syndrorpiés through a syndrome calculator, producingrabit output.

will be restricted to the: + 1 span of the impulse response off hrow out the first: outputs and retain the lastbits. Theser

the syndrome function. bits are then passed through a filter with responge) /a(z)

The output of the syndrome filter is shifted into a registelthis method assumés > r). Ther bits produced from this
of length where a match to the desired sync pattefn) is last filtering, summed with a constantbits (that determines
made. This sync signal is then used to establish and maintaif)), determine the parity bits that are to be transmitted. Note
synchronization as well as to detect the presence of errors. that there are simplifications that can be applied here. Firstly,

One of the more interesting aspects of this approach rela@dy the firstr — 1 message bits are needed for thigz)";
to the structure of the syndrome checker. First, we note that fhere is no need to build a buffer of length+- 1 (as required
decoder acts as a filter that is continually fed inputs and prat the receiver).
duces outputs. It needs never to be reset. Itis self-synchronizing ) . . )
and naturally limits error propagation (these two concerns aredf Relationships with Cyclic Codes and CRCs
course intimately related). For simplicity of understanding, con- A common class ofr, k) LBC'’s used for error detection in a
sider the startup problem with an offset of 0. Assume the ddtage variety of transmission and storage systems areyitle
is always zero (thus the parity checks are all 0) and this is predundancy chedfCRC) codes. These codes are best described
sented at the input of the decoder. Furthermore, assume thatihagrms of polynomial codewordgz) € F3[z] (the set of
been randomly initialized with a nonzero value. Since the inpbitnary polynomials of degree: n) and agenerator polynomial
of the decoder is zero, we would like the output of the decodgfz) of degreer = n — k. The code
to produce the all 0’'s output after a short transient due to the
initial conditions of the decoder circuit. Thisis in factwhatwill  C = {c(z) € Fy[z]|c(z) = m(z)g(z), m(z) € Fy[z]}
happen (even though the state of the recursive part of the cir-
cuit will never go to the zero state, in this case). Why is thig$ all polynomial multiples of the generator polynomiglk) of
A nonzero initial condition in the denominator circuit, with arflegree less tham. A CRC code can be described as an intersec-
all 0's input, will in fact produce the PN sequence associatéi@n of theideal generated by(x) in thering of polynomials
with g(z). Thatis, the output will be the power serigge) with ~ F2[] [5]
some random delayy/ (which depends on the exact choice of

initial condition). Thus, we know that the output sequence can ¢ =(g()) N F3[x]
be written as a rational functior()/g(x), where the degree (g(2)) ={c(z) € Fola]|c(x)
of ¢(x) is less than (the degree of(x)). However, after the =m(z)g(z), m(z) € Folz]}.

numerator circuit is applied, the output becomes a polynomial
of degree at mostr — 1) + (k + 1) = n (the blocklength of  Given the generatog(x), of degreer, and the blocklength
the code). (Algebraically, this follows from the fact thgtz) = for a CRC, one can always find polynomidiéz), of degree
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TABLE | casesp = 6, 8, the codes are shortened cyclic codes, that have
A SMALL EXAMPLE, g(¢) = 1+ + 2% n =6,7,8 duals that are not shortened cyclic codes.
nlk | a(=z) | b(z) f(z) ] h{z) m
AR TR T T =  B. The J.83 (appendix B)/ IEEE 802.14/MCNS, MPEG/Sync
714 1 z? 1+z' l+z+z2+z* | 7 System
85 1+2 e 1+z°+28 1+23 14

An FIR-PCC is incorporated in the newly established ITU
standard of digital cable television standard, J.83 appendix B,
k = n —r and f(x) of degreen such thatg(x)h(z) = f(z) Whichis based on an MPEG 2 transport packet data stream [1],

and then [6]. This technique is also the basis for cable modem down-
stream transmission defined in the IEEE 802.14 and MCNS
C ={c(z) € F3[z]|e(x)h(x) = 0 modulo f(x)} standards.

MPEG packets are 188 bytéa = 1504 bits) long with
andC forms an ideal in theuotient ring 7 [x]/( f(x)). If one 187 bytes(k = 1496 bits) of data and 1 bytér = 8 bits) of
can solveg(z)h(xz) = 2™ — 1 (i.e., f(z) = 2™ — 1) then the sync-word. (Note tha2® — 1 = 255 does not divide: = 1504.)
CRC is acyclic code In this case, the dual code is also a cycliThe J.83B system [1] uses the space for the 1-byte sync-word

code with generatar*h(z 1) to accomplished both synchronization and additional error de-
‘ tection (above that provided by the Reed—Solomon code in the
Ct = (e*n(zh)) N Fy ] FEC). This is accomplish via an FIR-parity-check based LBC

) . . (as described above). The parameters of the code:arel 504,
and thus the dual of a cyclic code is a cyclic code. However, — 1496) where

for most choices of blocklength, it is not possible to solve

g(z)h(xz) = f(x) with f(z) = 2™ — 1. For example, ifg(z)

is a primitive polynomial (or the product of a primitive polyno-

mial with z — 1, a common form of the generator used in many a(z) =1

CRC codes), then the blocklengthmust be divisible by2" — 1 bz)=14+z+2°+2"

(2r=! — 1). For such other values of, the codeC is in fact a

shortened cyclic codg], [3] since one can always find an in-which is based on a primitive polynomig{z) of degree 8 (i.e.,

tegerm > n such thaty(z) dividesz™ — 1 and the cod€ is it produces a PN sequence of length 255), a constant and

obtained by shortening then, m — r) code{g(x)) N F5*[z] to  ab(z) with four terms.

the (n,n —r) codeC = (g(z)) N F3[x]. The system uses a coset of the FIR-parity-check LBC. The
For a shortened cyclic codep > n, the polynomial standard uses the sequence) = 1 + x + 2% + 2% (0x47

z*h(z~1) does not generate the dual code and in fact the dualHex) that has good autocorrelation properties (in fact, it is

code is not the intersection with any ideal M [x]. Thus an the original MPEG sync-word!). This is obtained by adding the

FIR-PCC, which is the dual of a shortened cyclic code, is noffseto(z) = 1+ x + 2% + 2° + 2% (0x67 in Hex) to the parity

a shortened cyclic code. check byte at the transmitter.

glz) =14z +2°+ 2%+ 28

IV. APPLICATIONS V. CONCLUSIONS

Inthe present application, it has been realized that for reasongp;g paper describes a new class of algebraic block codes that
of simplifying the syndrome calculation, the dual of a shortenegle gescribed in terms of a syndrome that is easy to compute.
cyclic code offers distinct advantages over the usual CRC tefle syndrome is calculated from the output of a FIR filter (over
nique of using a shortened cyclic code. Thus for example, ONgg, pinary fieldF,). Furthermore, the blocklength of the code
g(«) andn have been fixed, the codewords of a CRC would ey, pe quite long as the particular FIR structure described has,
the setCcre = {g(x)) N 73 [z], while we propose to use thej, tact an IIR (or recursive) implementation which has little
setCrir = ((z*h(z 1)) N F4[z])". Note thaiCrir # Ccre:  computational cost as a function of the blocklength.
unless the code is a cyclic code (ig(#) dividesz™ —1). The  1he purpose of the FIR-PCC's are for synchronization and
choice ofCrir means that the simple syndrome calculation presyror getection. During an acquisition stage, the FIR-PCC is
cedure described previously will apply; this would not be pog;seq to establish block boundaries in a fixed length packet (or

sible in general witicre. frame) based system. Once the packet boundaries are estab-
lished, the FIR-PCC code can be used to monitor for errors in
A. Small Examples transmission.
As an example, consider the primitive polynomiglc) = A key observation that makes the technique robust in the pres-

1+ z + 2 of degreer = 3 and the blocklengths = 6,7,8. ence of noise is that the order of operation of a cascaded pair of
In the Table I, the dimension of the codds given as well as filters, while irrelevant from an impulse response viewpoint, is
f(z) = a(z) — 2**t1b(z) = g(x)h(x) and the value of the critically important from a transient analysis perspective. Thus,
smallest cyclic code lengthn. with the correct configuration, the IIR implementation of the

Notice that only in the case = 7 is the code a cyclic code, syndrome calculation has only finite error propagation at the
which has a dual that is itself a cyclic code. In the other twoutput.
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The application of the theory has been realized, in practic
in the international standard for digital television transmissic
(J.83b) that forms an integral part of the digital TV set-top ba
that is becoming wide-spread in the US and around the wor
This same standard is used in the “downstream” transmiss|
for the largest base of standards based cable modems.
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