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FIR Parity Check Codes
Chris Heegard, Fellow, IEEE,and Andrew J. King

Abstract—This paper describes a method for packet synchro-
nization and error detection for use in a synchronous digital
communications system. The method relies upon a class of linear
block codes that have parity checks that are expressed in terms
of a finite-impulse response(FIR) filter. This system is incor-
porated in the newly established ITU standard of digital cable
television standard, J.83 appendix B, which is based on an MPEG
2 transport packet data stream. This technique is also the basis
for cable modem downstream transmission defined in the IEEE
802.14 and MCNS standards. The parity check structure is based
on a pseudonoise sequence generated by a (binary) primitive
polynomial. This structure allows for a computationally efficient
implementation of the parity check FIR filter, in a recursive
manner, that is none the less self-synchronizing. The FIR parity
check codes that are described are characterized as the dual of a
CRC-type, shortened cyclic code. The theory and computational
structure of these codes are presented here; the J.83B code is used
as an example of the general theory.

Index Terms—Block codes, cyclic codes, dual codes, linear codes,
pseudonoise coding, FIR digital filters.

I. INTRODUCTION

T HIS paper considers a class of linear block codes (LBC’s)
that have parity checks that are expressed in terms of afi-

nite-impulse response(FIR) filter. The codes are useful for block
synchronization and error detection in a synchronous digital
communications system. The objective of the block encoding
is to periodically insert parity check information into the packet
stream. Initially, the parity checks are used to establish packet
boundaries at the receiver in order to parse the data into the de-
sired packets. After packet synchronization is established, the
parity checks are used to detect uncorrected errors that may
have occurred at the output of the receiver/error correction pro-
cessing. This system is incorporated in the newly established
ITU standard for digital cable television standard, J.83 appendix
B, which is based on an MPEG 2 transport packet data stream
[1]. This technique is also the basis for cable modem down-
stream transmission defined in the IEEE 802.14 and MCNS
standards.

The novel aspect of the encoding is that the parity checks
of the blockcode are computed at the receiver by observing
the output of a FIR linear time-invariant, (binary) filter. The
parity check structure is based on a pseudonoise (PN) sequence
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generated by a (binary) primitive polynomial. This structure
allows for a computationally efficient implementation of the
parity check FIR filter, in a recursive manner, that is none the
less self-synchronizing. The FIR parity check codes are charac-
terized as the dual of a CRC-type, shortened cyclic code.

The paper begins in Section II with background material that
reviews basic definitions and ideas from algebraic coding theory
and the theory of polynomials and filters. The second section,
Section III, describes the theory and computational structure of
FIR parity check codes. In Section IV, a few small examples, as
well as the J.83B code are used to illustrate the general theory.
The reader may find it helpful to peruse the examples in Section
IV in conjunction with understanding the details presented in
Section III.

II. BACKGROUND

A. LBC’s

A binary LBC with parameters consists of a
dimensional subspace of the set of binary-tuples [2]–[4].
Such a space can be described by a set ofbasis vectorsplaced
in a generator matrix

...
...

...

Given a generator matrix, a (linear) encoder can be constructed
via matrix multiplication , where is a binary

-tuple. If the first columns of is the identity matrix, we say
that represents asystematic encoder. Note that a given LBC

has many generator matrices and thus, many encoders.
An alternate description of a linear codeis given by a set

of linearly independentparity-check equationsthat
can be expressed in terms of aparity-check matrix , an
binary matrix. A binary vector of length is acodewordif and
only if

...
...

...

or . Again, a given LBC has many parity-check
matrices.

The space spanned by the rows of a given parity-check matrix
for a code form an LBC called thedual code. This

code is described by

for all
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Fig. 1. The relationship betweenf(x) = 1=g(x), a(x)=g(x) andb(x)=g(x).

A cosetof a LBC is obtained via solutions to the equation

where is a fixed binary vector of length.
To encode onto a coset of a LBC, a constant vector can be

added

where . For a systematic encoder, the constant vector
can always be chosen to be zero in the firstcoordinates (thus

a constant is added to the parity checks only).

B. Polynomials, Rational Functions, and Filters

Given a binary polynomial

of degree , the power series

is defined by the relationship

Note that the power series forms a periodic sequence, that
is

where is the (fundamental) period of and
represent the truncated power series withterms.

It is well known that the period , where equality is
achieved if and only if is a primitive polynomial; in this
case, is said to be amaximal length, pseudorandom(PN)
sequence.

Closely associated with the power series is thediffer-
enceequation

which describes alinear, time-invariant, causal, finite-state
system with input sequence , output sequence , and
impulse response .

Similarly, a rational function (i.e., ratio of polynomials)

is defined by the polynomial equation

The power series implies the difference equation

If and is any nonnegative integer then
thedelayedpower series

for some of degree less than is easily determined
from the polynomial equation .

Furthermore, for the nonnegative integer thetruncated
power series (a polynomial) , for

for some of degree less than. In fact

is easily determined from the polynomial equation
. The difference equation, in

this case

(1)

which corresponds to asliding windowor FIR system.
The relationship of three power series is indicated in Fig. 1.
We are interested in the polynomial , of degree ,

that is obtained from the subsequence of the power series
starting with the term up to the term . Since
begins with , and begins with , the piece
we are interested in can be obtained by shifting by
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Fig. 2. The relationship betweena(x)=g(x), x b(x)=g(x) andh (x).

places (i.e., by multiplying by ) and subtracting.
This relationship is depicted in Fig. 2. Note that since has
a degree less than , the first terms of the sequence,

, form , while the terms starting
at form (there is no overlap in the difference

). Note that this filter can be implemented,
using the difference equation (1), with a number of terms that
has terms rather than
terms (where is theHamming weightof the polynomial).
This is very important in our application, since the polynomials

, , are small degree (8 or less) and the degree of
is large.

III. FIR PARITY-CHECK LBC’S

We are interested in generating LBC’s for which the parity
check equations can be implemented by a single FIR filter. Let

be a polynomial of degree with nonzero constant
term . Then, the equation shown at the bottom
of the page defines an {FIR-parity-check-code} FIR-PCC. With
such an FIR-parity-check LBC, codewords that are con-
catenated together

can be synchronized by passing through the FIR filter with
response

where each has a degree less than(see Fig. 3). Thesyn-
drome sequence has the constant polynomial (a poly-

Fig. 3. Syndrome calculation.

nomial of degree less thanthat determines which coset of the
LBC is used) periodically embedded at the end of each n-block
(in the absence of channel errors). Thus by correlating the syn-
drome sequence with the constant polynomial , syn-
chronization can be established and maintained. It is important
in the acquisition phase that the correlation with the known
be reliable in the presence of noise (channel errors). For this
reason, care should be taken in the design of “sync” polynomial

to address this issue. In particular, the polynomial should
have good autocorrelation properties (e.g., a Barker code). In
fact, the zero polynomial (which corresponds to a
linear code) has a poor autocorrelation and thus would be a poor
choice.

By using a systematic encoder, the data is recovered directly
from the concatenated sequence . Furthermore, once syn-
chronization has been established, the syndrome can be used
to detect errors in the data whenever the fixed polynomial
fails to appear at the anticipated time. Finally, by using an FIR
parity check means that the syndrome former is self-synchro-
nizing (i.e., the initial conditions of the syndrome are resolved
automatically) and has limited error propagation (the effect of
an error is limited to the length of the FIR window, bits).

To choose the response , a recursive solution is re-
quired. Once a recursion polynomial is selected, a suitable

and are determined so that

with nonzero constant term and degree . (Note
that once is specified, only certain choices of and

...
...

...
. . .

...
...

...
...

...
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Fig. 4. Syndrome calculator/sync detect.

will work; namely those for which divides
.)

Fig. 4 shows the general form for the calculation of the syn-
drome and synchronization detection. It is important to note
that the effects of the initial conditions in the recursive por-
tion of the circuit (i.e., the feedback part that implements the

function) have finite effect on the output. This is a di-
rect consequence of the fact that the polynomial

is divisible by and that the operations that imple-
ment these functions operate on the output of the recursive part
of the circuit. For example, if the initial conditions are nonzero
in the circuit, and the input is constantly zero, then the
output of the recursive portion is the PN sequence generated by

. However, within steps, the syndrome calculator will
constantly produce zero at the output. This property also insures
that the effects of channel errors on the output of the syndrome
will be restricted to the span of the impulse response of
the syndrome function.

The output of the syndrome filter is shifted into a register
of length where a match to the desired sync pattern is
made. This sync signal is then used to establish and maintain
synchronization as well as to detect the presence of errors.

One of the more interesting aspects of this approach relates
to the structure of the syndrome checker. First, we note that the
decoder acts as a filter that is continually fed inputs and pro-
duces outputs. It needs never to be reset. It is self-synchronizing
and naturally limits error propagation (these two concerns are of
course intimately related). For simplicity of understanding, con-
sider the startup problem with an offset of 0. Assume the data
is always zero (thus the parity checks are all 0) and this is pre-
sented at the input of the decoder. Furthermore, assume that has
been randomly initialized with a nonzero value. Since the input
of the decoder is zero, we would like the output of the decoder
to produce the all 0’s output after a short transient due to the
initial conditions of the decoder circuit. This is in fact what will
happen (even though the state of the recursive part of the cir-
cuit will never go to the zero state, in this case). Why is this?
A nonzero initial condition in the denominator circuit, with an
all 0’s input, will in fact produce the PN sequence associated
with . That is, the output will be the power series with
some random delay (which depends on the exact choice of
initial condition). Thus, we know that the output sequence can
be written as a rational function , where the degree
of is less than (the degree of ). However, after the
numerator circuit is applied, the output becomes a polynomial
of degree at most (the blocklength of
the code). (Algebraically, this follows from the fact that

Fig. 5. Two ways to cascade the IIR and FIR filters.

divides .) This means, that within one block-
length, the output of the decoder parity check circuit will be-
come all 0s (even though the state of the parity check circuit
is nonzero forever). This argument can be extended to nonzero
data, nonzero offset and to account for the finite error propaga-
tion in a straightforward manner.

It is important to note that from an impulse response (or
input/output) analysis, the two cascaded filters in Fig. 5 are
the same. The two ways implement the same rational transfer
function, but from a transient (or initial condition) analysis, the
two act quite differently. The first form is self-synchronizing,
the latter is not.

Finally, a systematic encoder must be implemented. A
simple two pass encoder is constructed as follows. First, take
the bit message, followed byzeros, and pass the resulting
bits through a syndrome calculator, producing anbit output.
Throw out the first outputs and retain the lastbits. These
bits are then passed through a filter with response
(this method assumes ). The bits produced from this
last filtering, summed with a constantbits (that determines

), determine the parity bits that are to be transmitted. Note
that there are simplifications that can be applied here. Firstly,
only the first message bits are needed for the “ ”;
there is no need to build a buffer of length (as required
at the receiver).

A. Relationships with Cyclic Codes and CRCs

A common class of LBC’s used for error detection in a
large variety of transmission and storage systems are thecyclic
redundancy check(CRC) codes. These codes are best described
in terms of polynomial codewords (the set of
binary polynomials of degree ) and agenerator polynomial

of degree . The code

is all polynomial multiples of the generator polynomial of
degree less than. A CRC code can be described as an intersec-
tion of the ideal generated by in the ring of polynomials

[5]

Given the generator , of degree , and the blocklength
for a CRC, one can always find polynomials , of degree
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TABLE I
A SMALL EXAMPLE, g(x) = 1 + x + x , n = 6; 7; 8

and of degree such that
and then

modulo

and forms an ideal in thequotient ring . If one
can solve (i.e., ) then the
CRC is acyclic code. In this case, the dual code is also a cyclic
code with generator

and thus the dual of a cyclic code is a cyclic code. However,
for most choices of blocklength, it is not possible to solve

with . For example, if
is a primitive polynomial (or the product of a primitive polyno-
mial with , a common form of the generator used in many
CRC codes), then the blocklengthmust be divisible by

. For such other values of, the code is in fact a
shortened cyclic code[2], [3] since one can always find an in-
teger such that divides and the code is
obtained by shortening the code to
the code .

For a shortened cyclic code, , the polynomial
does not generate the dual code and in fact the dual

code is not the intersection with any ideal in . Thus an
FIR-PCC, which is the dual of a shortened cyclic code, is not
a shortened cyclic code.

IV. A PPLICATIONS

In the present application, it has been realized that for reasons
of simplifying the syndrome calculation, the dual of a shortened
cyclic code offers distinct advantages over the usual CRC tech-
nique of using a shortened cyclic code. Thus for example, once

and have been fixed, the codewords of a CRC would be
the set , while we propose to use the
set . Note that ,
unless the code is a cyclic code (i.e., divides ). The
choice of means that the simple syndrome calculation pro-
cedure described previously will apply; this would not be pos-
sible in general with .

A. Small Examples

As an example, consider the primitive polynomial
of degree and the blocklengths .

In the Table I, the dimension of the codeis given as well as
and the value of the

smallest cyclic code length .
Notice that only in the case is the code a cyclic code,

which has a dual that is itself a cyclic code. In the other two

cases, , the codes are shortened cyclic codes, that have
duals that are not shortened cyclic codes.

B. The J.83 (appendix B)/ IEEE 802.14/MCNS, MPEG/Sync
System

An FIR-PCC is incorporated in the newly established ITU
standard of digital cable television standard, J.83 appendix B,
which is based on an MPEG 2 transport packet data stream [1],
[6]. This technique is also the basis for cable modem down-
stream transmission defined in the IEEE 802.14 and MCNS
standards.

MPEG packets are 188 bytes bits) long with
187 bytes bits) of data and 1 byte bits) of
sync-word. (Note that does not divide .)
The J.83B system [1] uses the space for the 1-byte sync-word
to accomplished both synchronization and additional error de-
tection (above that provided by the Reed–Solomon code in the
FEC). This is accomplish via an FIR-parity-check based LBC
(as described above). The parameters of the code are ,

where

which is based on a primitive polynomial of degree 8 (i.e.,
it produces a PN sequence of length 255), a constant, and
a with four terms.

The system uses a coset of the FIR-parity-check LBC. The
standard uses the sequence (0x47
in Hex) that has good autocorrelation properties (in fact, it is
the original MPEG sync-word!). This is obtained by adding the
offset (0x67 in Hex) to the parity
check byte at the transmitter.

V. CONCLUSIONS

This paper describes a new class of algebraic block codes that
are described in terms of a syndrome that is easy to compute.
The syndrome is calculated from the output of a FIR filter (over
the binary field ). Furthermore, the blocklength of the code
can be quite long as the particular FIR structure described has,
in fact, an IIR (or recursive) implementation which has little
computational cost as a function of the blocklength.

The purpose of the FIR-PCC’s are for synchronization and
error detection. During an acquisition stage, the FIR-PCC is
used to establish block boundaries in a fixed length packet (or
frame) based system. Once the packet boundaries are estab-
lished, the FIR-PCC code can be used to monitor for errors in
transmission.

A key observation that makes the technique robust in the pres-
ence of noise is that the order of operation of a cascaded pair of
filters, while irrelevant from an impulse response viewpoint, is
critically important from a transient analysis perspective. Thus,
with the correct configuration, the IIR implementation of the
syndrome calculation has only finite error propagation at the
output.
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The application of the theory has been realized, in practice,
in the international standard for digital television transmission
(J.83b) that forms an integral part of the digital TV set-top box
that is becoming wide-spread in the US and around the world.
This same standard is used in the “downstream” transmission
for the largest base of standards based cable modems.
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